Eigenvalues of Hadamard powers of large symmetric Pascal matrices

Ashkan Ashrafi a, Peter M. Gibson b,∗

aDepartment of Electrical and Computer Engineering, University of Alabama in Huntsville, Huntsville, AL 35899, United States
bDepartment of Mathematical Sciences, University of Alabama in Huntsville, 204 Madison Hall, Huntsville, AL 35899, United States

Received 22 June 2004; accepted 10 February 2005
Available online 5 May 2005
Submitted by B.L. Shader

Abstract

Let S_n be the positive real symmetric matrix of order n with (i, j) entry equal to $\binom{i + j - 2}{j - 1}$, and let x be a positive real number. Eigenvalues of the Hadamard (or entry wise) power $S_n^{(x)}$ are considered. In particular for k a positive integer, it is shown that both the Perron root and the trace of $S_n^{(k)}$ are approximately equal to $\frac{x^k}{x^2-1} \left(\frac{2n-2}{n-1} \right)^k$.

© 2005 Elsevier Inc. All rights reserved.

Keywords: Eigenvalues; Symmetric Pascal matrices; Real Hadamard powers; Perron roots; Positive matrices; Positive definite matrices; Convergence; MATLAB

1. Introduction

The symmetric Pascal matrix of order n is the real symmetric matrix $S_n = (s_{ij})$ with

$$s_{ij} = \binom{i + j - 2}{j - 1}.$$
\[s_{ij} = \begin{pmatrix} i + j - 2 \\ j - 1 \end{pmatrix} \quad \text{for } i, j = 1, 2, \ldots, n. \]

Since \(S_n \) can be factored as \(S_n = U_n^T U_n \) where \(U_n \) is an involutory matrix [1], it is easy to see that the eigenvalues of \(S_n \) have a number of special properties. For example, \(S_n \) has \(n \) distinct positive eigenvalues \(\lambda_1, \lambda_2, \ldots, \lambda_n \), and \(\{1/\lambda_1, 1/\lambda_2, \ldots, 1/\lambda_n\} = \{\lambda_1, \lambda_2, \ldots, \lambda_n\} \).

We wondered what could be said about the maximal eigenvalue (that is, the Perron root) of the positive matrix \(S_n \). Using MATLAB, it was seen that the Perron root of \(S_n \) increased quite rapidly as \(n \) increased. With such a rapid increase, it did not seem possible to find a recognizable pattern for these values. In order to get more revealing numbers, it was decided to transform \(S_n \) by multiplying it by a rapidly decreasing positive function of \(n \). The chosen function for this transformation was the reciprocal of the \((n, n)\) entry of \(S_n \). Thus we considered the Perron root \(\mu_n \) of the regularized symmetric Pascal matrix \(R_n = \begin{pmatrix} 2n - 2 \\ n - 1 \end{pmatrix}^{-1} S_n \). Although the use of this particular regularization was based more on convenience than insight, it was found to be an excellent choice. Both \(\mu_n \) and the trace \(\tau_n \) of \(R_n \) seemed to be converging. Based on data such as that found in Table 1, we conjectured that \(\lim_{n \to \infty} \mu_n = \lim_{n \to \infty} \tau_n = \frac{4}{3} \). It was not difficult to prove the conjecture for \(\tau_n \), but a proof of the one for \(\mu_n \) was more elusive. Fortunately MATLAB computations lead to a diagonal matrix \(D \) that yielded a useful lower bound for the row sums of the matrix \(D^{-1} R_n D \). Thus \(\lim_{n \to \infty} \mu_n = \lim_{n \to \infty} \tau_n = \frac{4}{3} \), which implies that for large values of \(n \) the positive definite matrix \(S_n \) has a dominant eigenvalue that is much larger than the sum of all of the \(n - 1 \) other eigenvalues.

These results have natural extensions to Hadamard powers. Let \(x \) be a real number and let \(A = (a_{ij}) \) be a nonnegative matrix of order \(n \). The matrix \(A^{(x)} = (a_{ij}^x) \) of order \(n \) obtained by raising each entry of \(A \) to the power \(x \) is a Hadamard power of \(A \). For each \(x > 0 \), let \(\mu_n(x) \) and \(\tau_n(x) \), respectively, denote the Perron root and the trace of the Hadamard power \(R_n^{(x)} \).

In Section 2, it is shown that \(\lim_{n \to \infty} \inf \mu_n(x) \geq \frac{4^x}{3^{x-1}} \) for each \(x > 0 \). In the next section, it is shown that \(\lim_{n \to \infty} \tau_n(x) = \frac{4^x}{3^{x-1}} \) for each \(x > 0 \), and that

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\mu_n)</th>
<th>(\tau_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1.3296</td>
<td>1.3457</td>
</tr>
<tr>
<td>40</td>
<td>1.3315</td>
<td>1.3392</td>
</tr>
<tr>
<td>60</td>
<td>1.3321</td>
<td>1.3372</td>
</tr>
<tr>
<td>80</td>
<td>1.3324</td>
<td>1.3362</td>
</tr>
<tr>
<td>100</td>
<td>1.3326</td>
<td>1.3356</td>
</tr>
<tr>
<td>120</td>
<td>1.3327</td>
<td>1.3352</td>
</tr>
<tr>
<td>140</td>
<td>1.3328</td>
<td>1.3349</td>
</tr>
</tbody>
</table>

Table 1

Perron root and trace of \(R_n \)
\[\lim_{n \to \infty} \mu_n(k) = \frac{4^k}{4^k - 1} \] when \(k \) is a positive integer. The paper concludes with two equivalent conjectures and a brief look at a related matrix.

2. A lower bound for the Perron root

The following lemmas will be used in obtaining a bound on the lower limit of the sequence \(\{\mu_n(x)\} \) when \(x > 0 \). For \(i \) and \(n \) positive integers with \(i \leq n \), let

\[r_{ni}(x) = \frac{1}{\left(\frac{n+i-2}{n-1}\right)^x \left(\frac{2n-2}{n-1}\right)^x} \sum_{j=1}^{n} \left(\frac{i+j-2}{j-1}\right)^x \left(\frac{n+j-2}{j-1}\right)^x. \]

Lemma 2.1. For each \(x > 0 \) and integer \(n \geq 2 \), \(r_{n1}(x) > r_{n2}(x) > \cdots > r_{nn}(x) \).

Proof. Let \(x > 0 \) and \(n \geq 2 \). Let

\[w_{ij}(x) = \left(\frac{i+j-2}{j-1}\right)^x \left(\frac{n+i-2}{n-1}\right)^x \] for \(1 \leq i, j \leq n \).

Using the convention that an empty product is equal to 1, we see that

\[w_{ij}(x) = \prod_{k=2}^{i} \left(\frac{i+j-k}{i+n-k}\right)^x \] for \(1 \leq i, j \leq n \).

Thus \(w_{in}(x) = 1 \) for \(1 \leq i \leq n \), and

\[w_{1j}(x) > w_{2j}(x) > \cdots > w_{nj}(x) \] for \(1 \leq j < n \).

Therefore, since

\[r_{ni}(x) = \frac{1}{\left(\frac{2n-2}{n-1}\right)^x} \sum_{j=1}^{n} w_{ij}(x) \left(\frac{n+j-2}{j-1}\right)^x \] for \(1 \leq i \leq n \),

it follows that \(r_{n1}(x) > r_{n2}(x) > \cdots > r_{nn}(x) \). \(\square \)

We now write \(r_n(x) = r_{nn}(x) \) and consider the sequence \(\{r_n(x)\} \).

Lemma 2.2. For each \(x > 0 \), there exists a positive number \(L_x \) such that

\[\lim_{n \to \infty} r_n(x) = L_x \leq \frac{4^x}{4^x - 1}. \]
Proof. Let \(x > 0 \) and let \(n \) be a positive integer. We have

\[
r_n(x) = \frac{1}{(2n^2 - 2)} \sum_{j=1}^{n} \left(\frac{n + j - 2}{j - 1} \right)^{2x}
\]

\[
= \sum_{k=1}^{n} \left(\frac{2n - k - 1}{n - k} \right)^{2x} \left(\frac{2n - 2}{n - 1} \right)^{2x}
\]

\[
= \sum_{k=1}^{n} k \left(\frac{n + 1 - i}{2n - i} \right)^{2x}.
\]

Hence, for \(n = 1, 2, \ldots \), it follows that \(r_n(x) < r_{n+1}(x) \) and

\[
r_n(x) \leq \sum_{k=1}^{n} \left(\frac{1}{4^x} \right)^{k-1} = \frac{4^x \left(1 - \left(\frac{1}{4^x} \right)^n \right)}{4^x - 1}.
\]

Thus \(\{r_n(x)\} \) is a bounded increasing sequence, and

\[
\lim_{n \to \infty} r_n(x) \leq \lim_{n \to \infty} \left(\frac{4^x \left(1 - \left(\frac{1}{4^x} \right)^n \right)}{4^x - 1} \right) = \frac{4^x}{4^x - 1}.
\]

□

Lemma 2.3. For each \(x > 0 \),

\[
\lim_{n \to \infty} r_n(x) = \frac{4^x}{4^x - 1}.
\]

Proof. Let \(x > 0 \). The subsequence \(\{r_{n^2}(x)\} \) of \(\{r_n(x)\} \) also converges to \(L_x \) of Lemma 2.2. However, we see that for each positive integer \(n \),

\[
r_{n^2}(x) \geq \sum_{k=1}^{n} \left(\frac{2n^2 - k - 1}{n^2 - k} \right)^{2x} \left(\frac{2n^2 - 2}{n^2 - 1} \right)^{2x}
\]

\[
\geq \sum_{k=1}^{n} \left(\frac{n^2 - n + 1}{2n^2 - n} \right)^{2x} \left(\frac{2n^2 - n}{n^2 - n + 1} \right)^{2x} \left(1 - \left(\frac{n^2 - n + 1}{2n^2 - n} \right)^{2x} \right)^n
\]

\[
= \frac{\left(\frac{2n^2 - n}{n^2 - n + 1} \right)^{2x} \left(1 - \left(\frac{n^2 - n + 1}{2n^2 - n} \right)^{2x} \right)^n}{\left(\frac{2n^2 - n}{n^2 - n + 1} \right)^{2x} - 1},
\]

\[
\lim_{n \to \infty} r_{n^2}(x) = \frac{4^x}{4^x - 1}.
\]
and it follows that
\[
\frac{4^x}{4^x - 1} \geq \lim_{n \to \infty} r_n(x) = L_x = \lim_{n \to \infty} r_n^2(x) \geq \frac{4^x}{4^x - 1}. \quad \Box
\]

Theorem 2.4. For each \(x > 0 \),
\[
\lim_{n \to \infty} \inf \mu_n(x) \geq \frac{4^x}{4^x - 1}.
\]

Proof. Let \(x > 0 \), let \(D \) be the diagonal matrix of order \(n \) whose diagonal entries are the entries of the last column of \(S_n^{(x)} \), and let \(B = D^{-1} R_n(x) D \). Then the positive matrix \(B \) has Perron root \(\mu_n(x) \) and row sums \(r_{ni}(x) \) for \(i = 1, 2, \ldots, n \). The theorem now follows from Lemmas 2.1 and 2.3, since it is well known (for example, see [4]) that the Perron root \(\mu_n(x) \) is at least as large as the minimal row sum \(r_n(x) \). \(\Box \)

3. The trace and positive integer Hadamard powers

We now consider the sequence \(\{ \tau_n(x) \} \) when \(x > 0 \).

Lemma 3.1. For each \(x > 0 \),
\[
\tau_{n+1}(x) = 1 + \left(\frac{1}{2(2 - 1/n)} \right)^x \tau_n(x) \quad \text{for } n = 1, 2, \ldots
\]

Proof. Let \(x > 0 \). For each positive integer \(n \), we have
\[
\begin{align*}
\tau_{n+1}(x) &= \frac{1}{\binom{2n}{n}} \text{trace}(S_{n+1}^{(x)}) \\
&= 1 + \frac{1}{\binom{2n}{n}} \text{trace}(S_n^{(x)}) \\
&= 1 + \frac{1}{\binom{2n}{n}} \frac{(2n - 2)^x}{(n - 1)} \tau_n(x) \\
&= 1 + \left(\frac{1}{\frac{2n}{2(2 - 1/n)}} \right)^x \tau_n(x). \quad \Box
\end{align*}
\]

Lemma 3.2. For each \(x > 0 \), one of the following holds:

(a) \(\tau_n(x) < \tau_{n+1}(x) \) for \(n = 1, 2, \ldots \).
(b) there exists a positive integer \(m \) such that \(\tau_n(x) > \tau_{n+1}(x) \) for \(n \geq m + 1 \).
Proof. Let \(x > 0 \). Suppose that (a) does not hold. Then there exists a positive integer \(m \) such that \(\tau_m(x) \geq \tau_{m+1}(x) \). Using induction and Lemma 3.1, we see that \(\tau_n(x) > \tau_{n+1}(x) \) for all integers \(n \geq m + 1 \). □

Theorem 3.3. For each \(x > 0 \),
\[
\lim_{n \to \infty} \tau_n(x) = \frac{4^x}{4^x - 1}.
\]
Proof. Let \(x > 0 \). Clearly \(\{\tau_n(x)\} \) is a bounded sequence, and Lemma 3.2 implies that this sequence is monotone for sufficiently large \(n \). Thus \(\lim_{n \to \infty} \tau_n(x) \) exists, and the theorem now follows from Lemma 3.1. □

We now consider positive integer Hadamard powers of \(R_n \).

Theorem 3.4. For each positive integer \(k \),
\[
\lim_{n \to \infty} \mu_n(k) = \frac{4^k}{4^k - 1}.
\]
Proof. Let \(k \) be a positive integer. Since positive integer Hadamard powers of symmetric positive definite matrices are positive definite (for example, see [3]), \(R_n^{(k)} \) is positive definite. Thus \(\mu_n(k) \leq \tau_n(k) \) for \(n = 1, 2, \ldots \), and the theorem follows from Theorems 2.4 and 3.3. □

Let \(k \) be a positive integer. Theorems 3.3 and 3.4 imply that for large values of \(n \) the positive definite matrix \(S_n^{(k)} \) has a dominant eigenvalue that is much larger than the sum of all of its \(n - 1 \) other eigenvalues.

4. Conjectures and a related matrix

Can Theorem 3.4 be extended to other Hadamard powers of \(R_n \)? We propose the following.

Conjecture 4.1. For each positive real number \(x \), \(\lim_{n \to \infty} \mu_n(x) = \frac{4^x}{4^x - 1} \).

Theorem 3.3 implies that Conjecture 4.1 is equivalent to the following.

Conjecture 4.2. For each positive real number \(x \), \(\lim_{n \to \infty} \frac{\mu_n(x)}{\tau_n(x)} = 1 \).

If \(P_n = (p_{ij}) \) is the real lower triangular matrix of order \(n \) with
\[
p_{ij} = \binom{i-1}{j-1} \quad \text{for} \quad 1 \leq j \leq i \leq n,
\]
then \(S_n = P_n P_n^T \) [2]. Since the positive matrix \(\hat{S}_n = P_n^T P_n \) has the same eigenvalues as \(S_n \), Theorems 3.3 and 3.4 for \(x = k = 1 \) imply the following.

Theorem 4.3. If \(q_n \) and \(t_n \), respectively, denote the Perron root and trace of \(\hat{S}_n \), then

\[
\lim_{n \to \infty} q_n \left(\frac{2n - 2}{n - 1} \right) = \frac{4}{3} = \lim_{n \to \infty} t_n \left(\frac{2n - 2}{n - 1} \right).
\]

Let \(q_n(x) \) and \(t_n(x) \), respectively, denote the Perron root and trace of the Hadamard power \(\hat{S}_n^{(x)} \). Theorem 4.3 implies that \(\lim_{n \to \infty} \frac{q_n(x)}{t_n(x)} = 1 \). We propose the following.

Problem 4.4. Determine the positive real numbers \(x \) for which \(\lim_{n \to \infty} \frac{q_n(x)}{t_n(x)} = 1 \).

Acknowledgment

The authors wish to thank Dr. Reza Adhami, Professor and Chair of the Department of Electrical and Computer Engineering of the University of Alabama in Huntsville, for his support.

References